Team 3

Machine Learning Model for

Colorimetric Change Assessment of a Biomaterial

Dipti Dhawade, Lipi Singhal, Satya Swaroop Nune, Tisha Bhavsar

Data Collection

Equipment & Dataset:

- Used Stereomicroscope for high-resolution imaging.
- Tracked the color & hydrogel change over the time of 10 days (~264 hrs).
- Images gathered: 2,112
- Classes → 4 Based on 11 based on timestamps biology

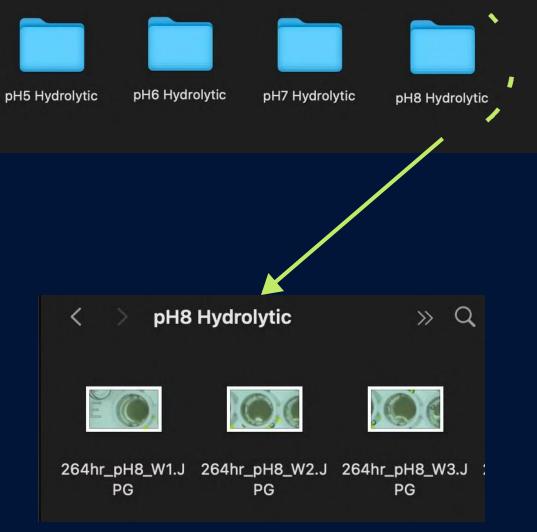
Precautions while taking readings:

- 1. Ensure consistent lighting across images.
- 2. Distance setup for consistent imaging.
- 3. Maintained incubation temperature of wells.
- 4. Taking readings at proper time intervals.

Data Collection

Storing and Labelling

- Folder-based arrangement of images
- Usage of a Python script for renaming images for access



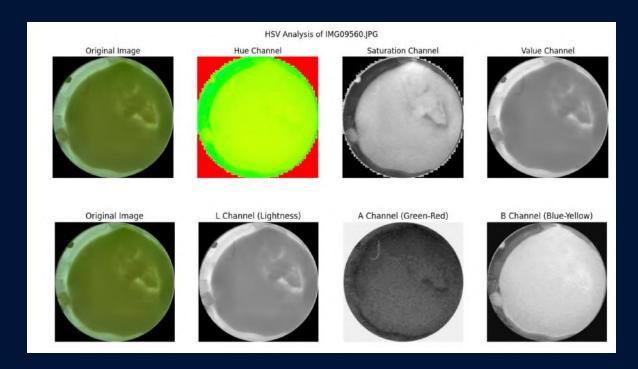
品 \$

264 hr

>> Q

Exploratory Data Analysis

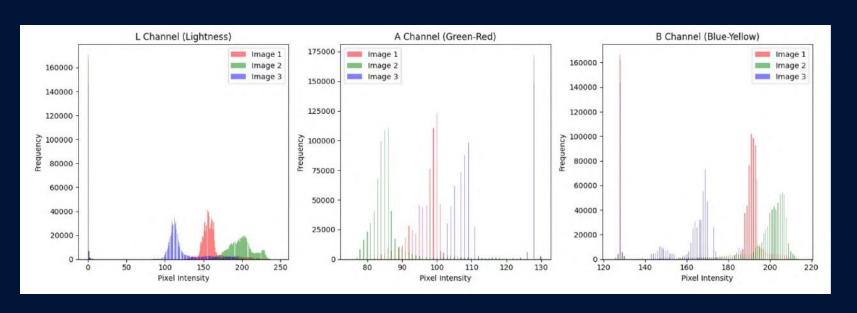
1. Images in LAB and HSV Colour Spaces



3. Kernel Experimentations for **Feature Extraction**

Gaussian Blur Kernel

2. Detecting variations through Colour Histograms



4. Kernel Experimentations for **Colour based Feature Extraction**

Sobel X Kernel

Sobel Y Kernel

Preprocessing & Exploratory Data Analysis

1

Capturing Region of Interest with Binary Mask and Bounding Circle

2

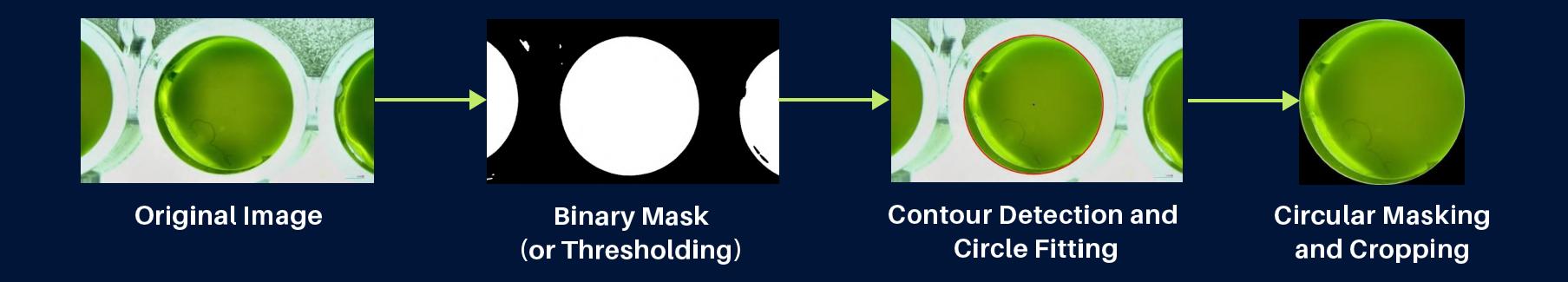
Background Subtraction:
Morphological Operations

3

Size Reduction: OpenCV - Inter_Area

Preprocessing

Problem: Neighbouring wells are also captured in images!



Capturing Region of Interest with
Binary Mask and Bounding Circle

4

Background Subtraction:

Morphological Operations

Explaining the approach!

Binary Mask → To isolate the green regions by thresholding in HSV space.

- Morphological Operations → To remove noise and fill small gaps using closing and opening.
- Contour Detection → To detect the circle enclosing a contour.

Circularity Calculation → To filter out noncircular objects based on shape properties.

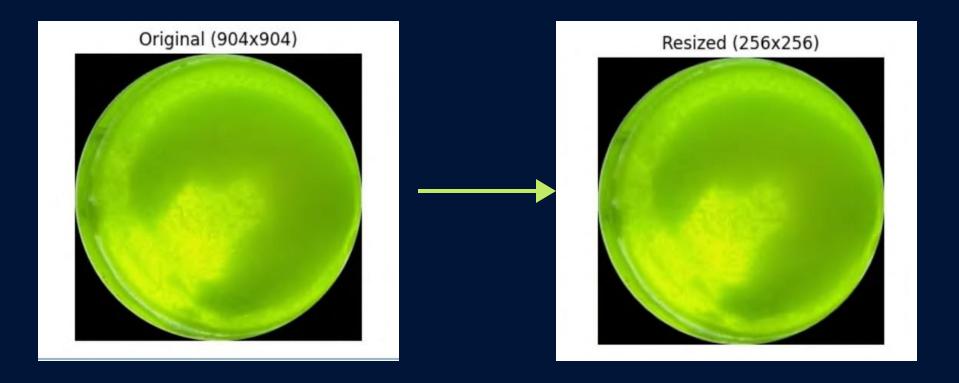
Applying Circular Mask \rightarrow To extract only the region of interest.

Capturing Region of Interest with
Binary Mask and Bounding Circle

Background Subtraction:

Morphological Operations

Preprocessing



Reasons for Re-sizing:

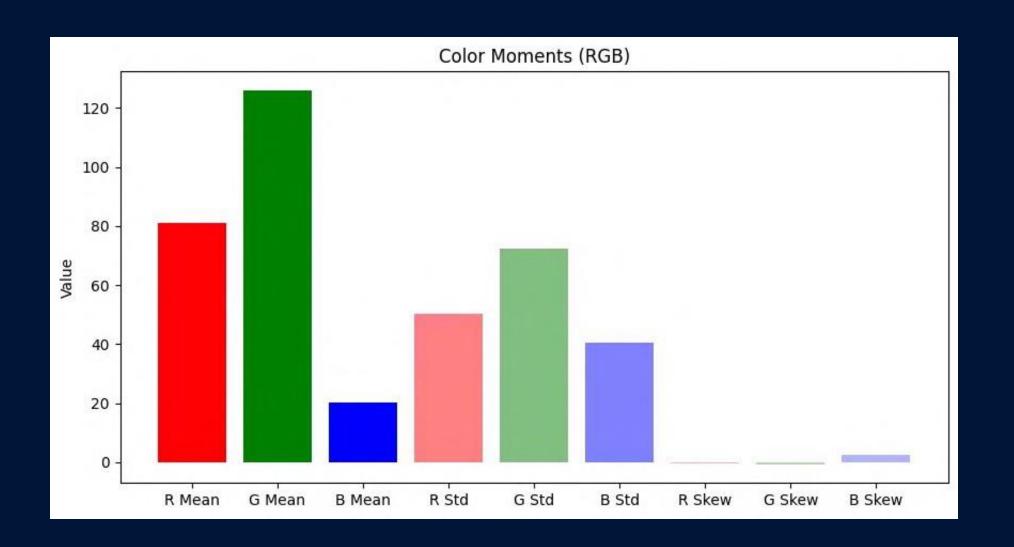
- 1. Reducing image size lowers memory consumption, allowing models to process more images at once.
- **2. Standardization** \rightarrow Our inputs initially had varying dimensions, in order to bring them to the same size.

Size Reduction:
OpenCV - Inter_Area

Feature Extraction

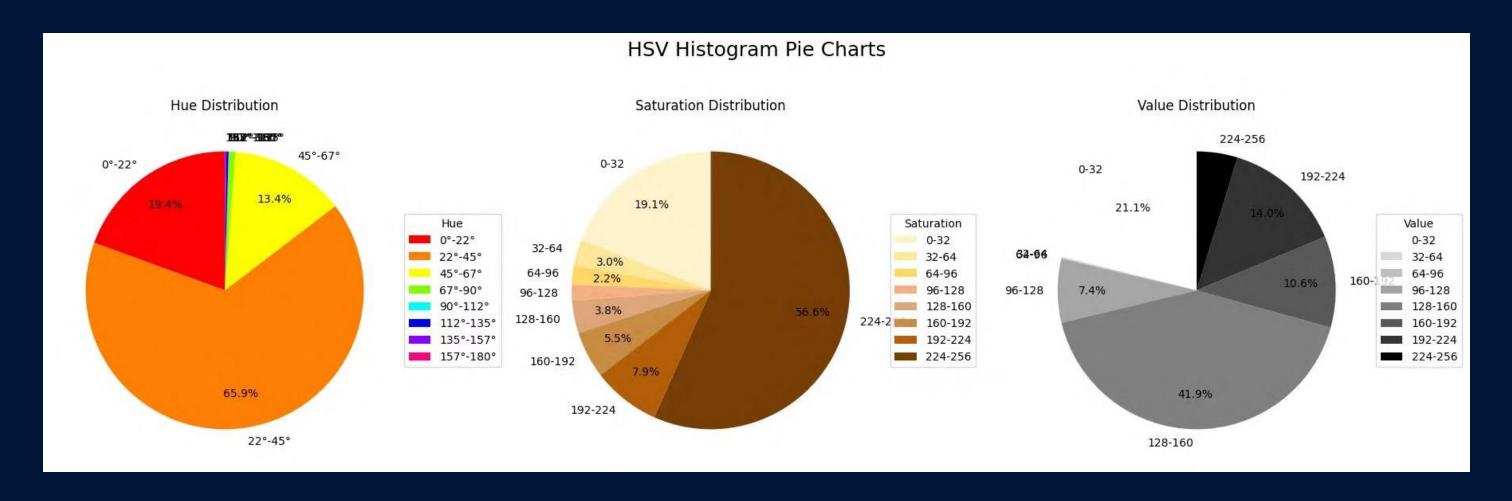
1. RGB Histogram

- 3 statistical moments (mean, standard deviation, skewness)
 across the Red-Blue-Green (RGB)
 color channels of the image
- 3 (RGB) * 3 (statistical) = 9 features



Feature Extraction

2. HSV Histogram



8 (Range) * 3 (Hue, Saturation, Value) = 24 Features

Feature Extraction

→ Total Features:

Target Variable = Physiological value of interest

Models Trained

- → Classical Programming
- → Machine Learning: 1. KNN
 - 2. SVM
 - 3. Random Forest
- → Convolutional Neural Network: Random Forest + CNN
- → Transfer Learning: 1. Resnet18
 - 2. Resnet18 + Random Forest
- → Long Short Term Memory: Resnet18 + LSTM

-- Classical Programming

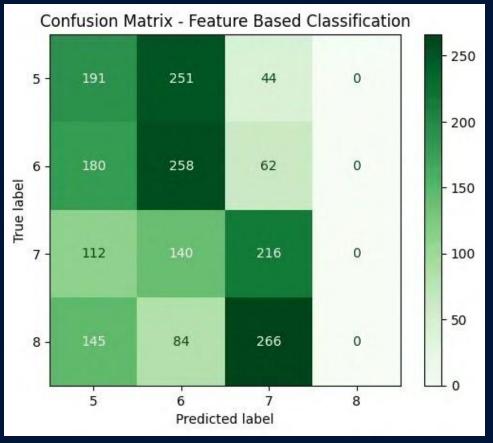
Rule-based Classification Logic:

 Calibrated green channel intensity thresholds (mean_g values of 60, 75, and 90)

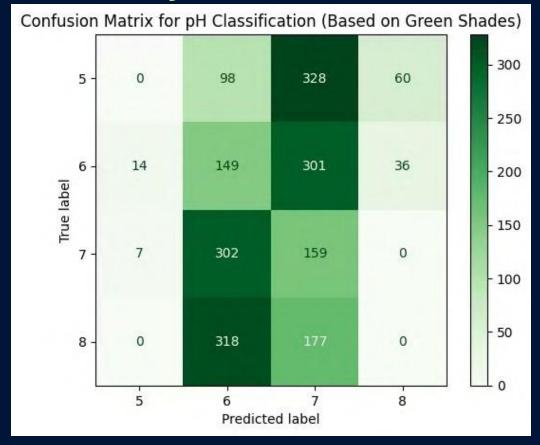
Shortcomings:

- pH indicators does not exhibit distinct color transitions at specific pH levels
- Model becomes biased towards the specific mean_g value

Accuracy: 34.12%



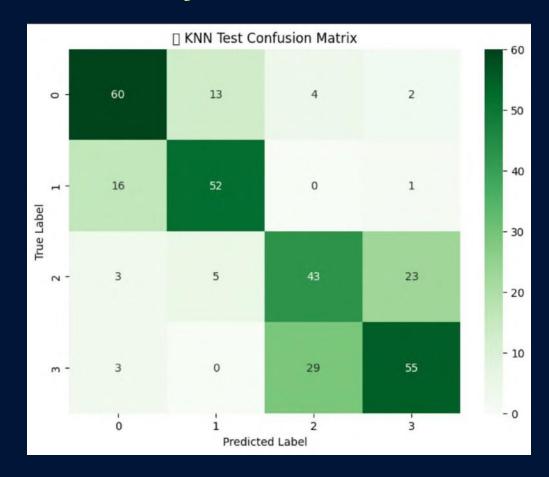
Accuracy: 14.85%



→ Machine Learning:

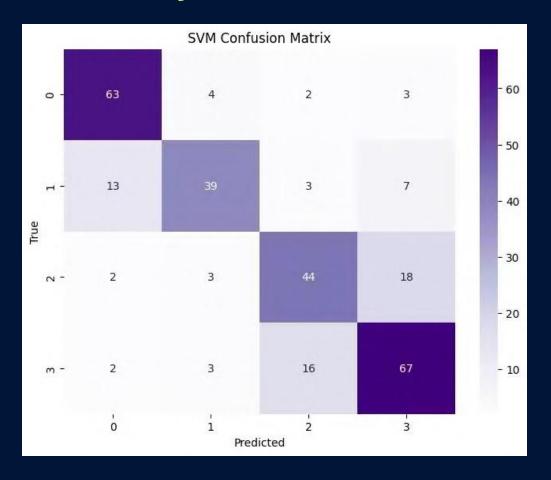
1. KNN

Accuracy: 0.679



2. SVM

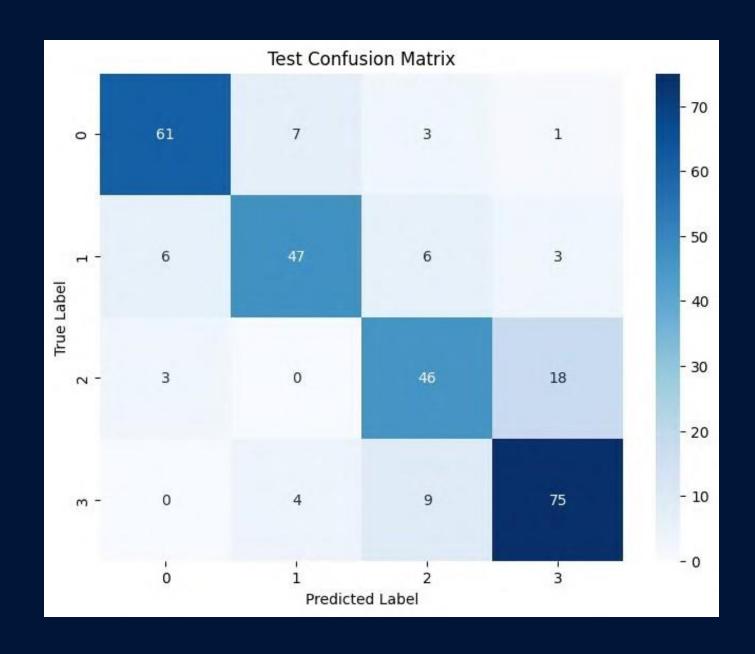
Accuracy: 0.737



→ Machine Learning:

3. Random Forest

- Test Accuracy: 0.792
- Training Process:
 - Feature Selection: It selects a subset of features at each split, ensuring diverse decision-making.
 - Tree Construction: Each decision tree is trained on a random subset of the training data.
 - Voting Mechanism: The final classification is based on majority voting across multiple trees.



Shortcoming: Model is becoming biased towards pH 5 & 6 as It is not able to extract enough features. Challenge we faced: Model was initially giving 99% accuracy but we noticed data leakage!

Important Learnings

Random Forest

Shortcoming: Model is becoming biased towards pH 5 & 6 as It is not able to extract enough features.

Challenge we faced: Model was initially giving 99% accuracy but we noticed data leakage!

The problem was with the way using which we split the data \rightarrow Silly mistake!

Initially: Randomly split all images as train and validation set (80%) and test set (20%).

Causing images of the same well sample to be in train and test (at different timestamps!)

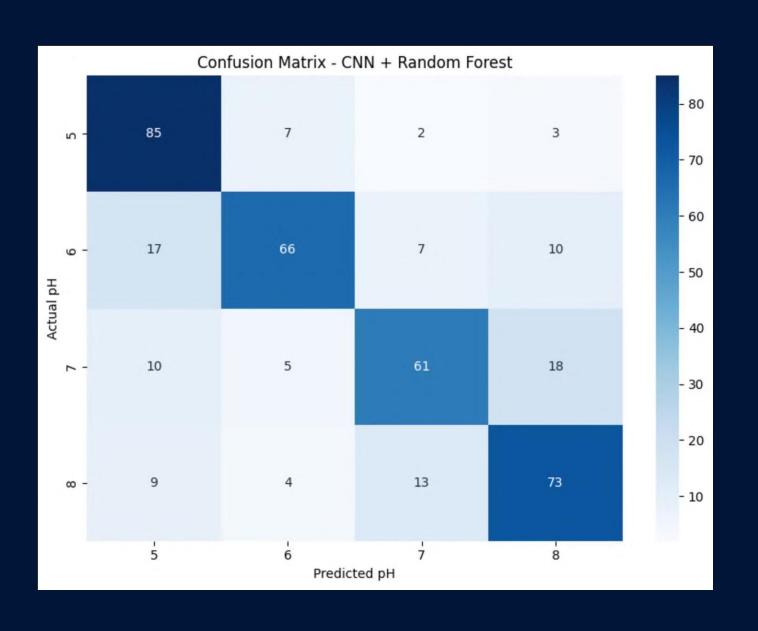
New technique: Divided sample-based sequential data into train and test sets this time!

→ Convolutional Neural Networks:

1. Random Forest + CNN

- Test Accuracy: 0.73
- We are extracting features using CNN and training Random Forest on those features.

Shortcoming: Accuracy is low as features extracted using CNN are not fine-grained enough to capture subtle image differences.



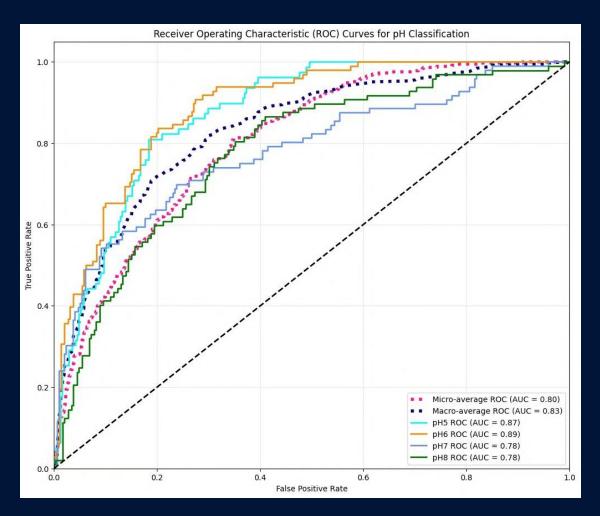
→ Transfer Learning?

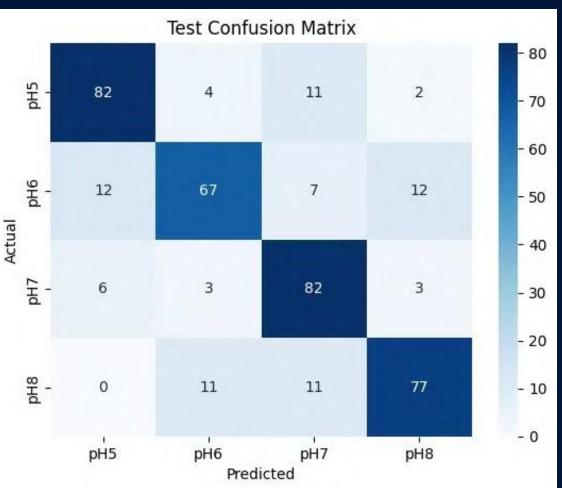
1. Resnet18

- Accuracy: 0.79
- Approach: Froze all but the last layer and replaced it for our dataset with 4 classes
 - → Precision 0.79
 - →Recall 0.78
 - →F1 score 0.80

Isohanni, J. (2025). Customised ResNet architecture for subtle color classification.

International Journal of Computers and Applications, 47(4), 341–355. https://doi.org/10.1080/1206212X.2025.2465727





→ Transfer Learning:

2. Resnet18 + Random Forest

Resnet18

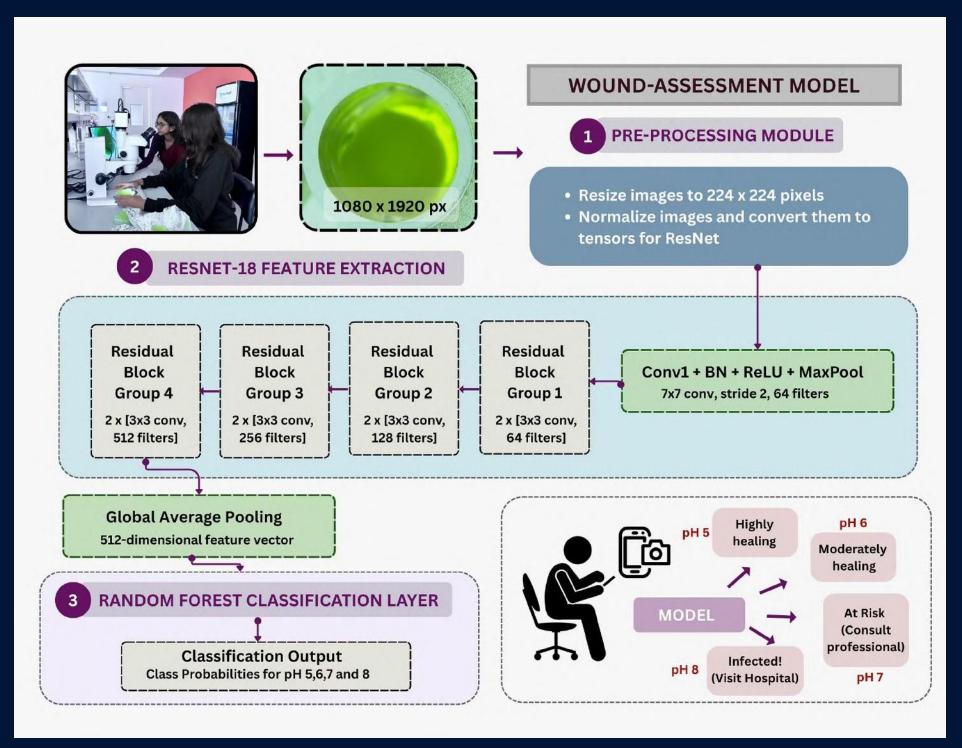
- Input images were resized, normalized, and fed into the ResNet-18 model.
- It consists of convolutional layers with residual connections, followed by a global average pooling and a final linear layer (modified to output 4 classes).
- Training used mini-batch gradient descent with backpropagation over 15 epochs.

Random Forest

- Feature vectors were extracted from the last layer of ResNet-18.
- These vectors were flattened and passed into the RF model for classification.
- The RF model uses an ensemble of decision trees, each trained on a random subset of features, and combines their predictions for final output.

Architecture

2. Resnet18 + Random Forest

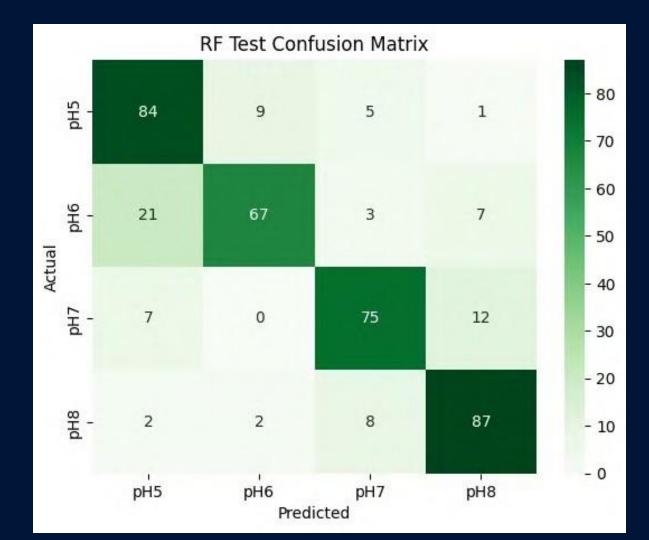


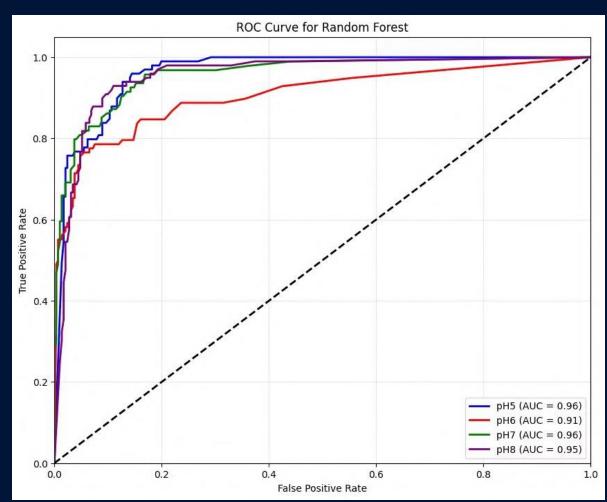
- → 32-image mini-batches: to optimize memory usage and computational efficiency.
- → Adaptive learning rates per parameter: Combines benefits of AdaGrad and RMSProp to accelerate convergence and improves model performance.
- → Multi-class Error Minimization: Utilized CrossEntropyLoss function to effectively quantify classification errors across 4 Hevels, enabling precise parameter adjustments during each training iteration.
- → Normalization using ImageNet statistics, and data augmentation techniques to enhance model generalization across levels.

Performance Metrics

2. Resnet18 + Random Forest

- →Accuracy 0.80
- → Precision 0.81
- →Recall 0.80
- →F1 score 0.80
- 1. Higher Classification Accuracy: 80% accuracy, 0.80 F1-score with balanced precision and recall, demonstrating effective level discrimination.
- 2. Relatively less Biased
- 3. Relatively Strong Discriminative Power: In ROC curve high AUC values (0.91-0.96), indicating that the model is more robust in distinguishing different images.





1. ResNet-18 + LSTM → Accuracy - 0.79

Sequential Analysis Using LSTM

Simple CNN and LSTM gave a low accuracy of

31 % →

Validation Accuracy: 0.3125

	precision	recall	f1-score	support
5	0.75	0.75	0.75	4
6	0.71	0.83	0.77	6
7	0.80	1.00	0.89	4
8	1.00	0.60	0.75	5
accuracy			0.79	19
macro avg	0.82	0.80	0.79	19
weighted avg	0.82	0.79	0.79	19
7				

Classification Report

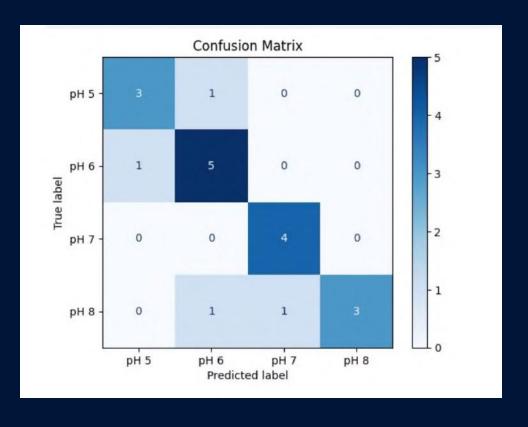
Approach

Input:

Sequence of 11 images per sample (Each image corresponds to one of the 11 observation time points for a given well.)

Output:

Predicted a class based on color evolution in the bandage over time.



1. ResNet-18 + LSTM

Approach

1 Input

Sequence of 11 images per sample (Each image corresponds to one of the 11 observation time points for a given well.) Peature Extraction (Spatial)

Each image is passed through a pretrained ResNet-18 (without final FC layer) → Outputs a 512-dimensional feature vector per image.

3 Sequence Modeling (Temporal)

The 11 feature vectors (one per timestamp)
are stacked into a sequence

→ Passed to an LSTM (input size = 512,
hidden size = 256)

Output

Predicted class based on color evolution in the bandage over time.

Prediction (Classification)

The final hidden state from the LSTM is passed through a fully connected (FC) layer

→ Outputs logits

Limitations of Our Solution

- 1. Errors in data collection: Inconsistent lighting, angle, or background during imaging may affect RGB feature extraction and classification accuracy.
- 2. Less data: Small sample size reduces model generalizability and increases the risk of overfitting
- 3. Lack of temporal analysis: The model evaluates each image independently, without considering wound progression over time.
- 4. Key biochemical markers (e.g., Protease XIV) that strongly correlate with infection and healing are not yet incorporated, limiting diagnostic depth.
- 5. Did not correlate the RGB values with absorbance values/ fluorescence intensity using a spectrometry/fluorometer readings to realize the full potential of fluorescence.

Thank you